ttx是什么

2024-05-06 01:25

1. ttx是什么

就是Nvidia GeForce GTX TITAN X,简称TTX。

Nvidia在上个月的GTC2015上正式发布的最新的TITAN系列的单芯卡,GM200核心,12GB显存,售价999美元,目前Nvidia GeForce GTX系列里的单芯旗舰。

ttx是什么

2. ttx是什么?

1、河鲀毒素(tetrodotoxin,TTX)是鲀鱼类(俗称河豚鱼)及其它生物体内含有的一种生物碱。
为氨基全氢喹唑啉型化合物,是自然界中所发现的毒性最大的神经毒素之一,曾一度被认为是自然界中毒性最强的非蛋白类毒素。毒素对肠道有局部刺激作用,吸收后迅速作用于神经末梢和神经中枢,可高选择性和高亲和性地阻断神经兴奋膜上钠离子通道,阻碍神经传导,从而引起神经麻痹而致死亡。
2、TTX(Try&Trust&X) TTX品牌是石泰集团旗下品牌创立于德国,第一个“T”是“Try”,不断尝试、勇于实践,第二个“T”是“Trust”,信任员工、信任客户,“X”代表着所服务的众多五星级酒店客户。

扩展资料:
河鲀的分布:
在公元前2500年前的中国和埃及,人们就已知道有些鲀形目鱼类(河鲀)有毒,河鲀毒素之名,也因河鲀而起。而人们通常所指的河鲀(并非河豚)(puffer fish),为鲀科鱼类,泛指硬骨鱼纲、鲀形目、鲀科的各属鱼类,鲀科鱼类是最常见的含河鲀毒素的水产品。中国的鲀科鱼类共有54种,其中东方鲀属22种。
根据伍汉霖等调查,中国共有35种河鲀具有不同程度的河鲀毒性,其中,在中国南海分布的有24种,在中国东海包括台湾沿海分布的有31种,在中国黄海分布的有14种,在中国渤海分布的有10种。
少数种类能洄游进入江河,如晕环东方鲀(Takifugu coronoidus)、暗纹东方鲀(Takifugu fasciatus)、弓斑东方鲀(Takifugu ocellatus)、铅点东方鲀(Fugu alboplumbeu)、兔头鲀(Lagocephalus lagocephalus)、横纹东方鲀(Takifuguoblongus)等。
这些鱼类年产量约在3-4万吨,占世界河鲀总产量的70%左右。
参考资料来源:百度百科-河鲀毒素

3. 心肌细胞为什么细胞内为负电荷外面为正电荷

心肌细胞膜内外存在着电位差,称为跨膜电位(transmembrane potential)。工作心肌在安静状态时细胞膜外为正,膜内为负,处于极化状态,膜内外的电位差值称为静息电位。特殊传导系统的心肌细胞,因为有自律活动(自动去极),不会有静息状态,只能用其最大极化状态时的膜电位值来代表,称为最大舒张电位。当心肌细胞兴奋时,产生一个可以扩播的电位变化,称为动作电位。动作电位包括去极化和复极化两个过程。心脏各部分心肌细胞的动作电位形态各异,图4-1是一个概略的示意图。
心肌细胞的跨膜电位是由于离子流跨越细胞膜流动而形成的。在电生理学中,正离子由细胞膜外向膜内流动或负离子由膜内向膜外流动,称为内向电流(inward current),它增加细胞内的正电荷,促使膜电位去极;反之,正离子由膜内向膜外流动或负离子由膜外向膜内流动,称为外向电流(outward current),它增加细胞内的负电荷,促使膜电位复极或超级化(hyperpolarization)。
跨膜离子流(transmembrane ionic current)大多经由位于细胞膜上的通道蛋白所形成的孔(pore)跨越细胞膜流动,是一种易化扩散。推动其流动的动力是细胞膜两侧的离子浓度差,但能否跨膜流动则取决于离子通道的孔是否开放。离子通道是否开放,有的取决于膜两侧的电位差,称为电压门控通道(voltage operated channel);有的取决于细胞内、外的化学成分变化,称为配体门控通道(agonist operated channel)。离子流跨越细胞膜流动的第二种形式是离子泵(ionic pump)的主动转运,它逆着膜两侧的离子浓度差将离子由膜的低浓度侧转运到高浓度侧,这需要能量,消耗供能物质ATP,例如钠-钾泵、钙泵等。第三种跨膜离子转运方式是离子交换,例如细胞内外的钠-钙交换(Na+-Ca2+ exchange),它的动力既来自膜内外的离子浓度差,也取决于膜内外的电位差。
(一)静息电位
人和哺乳类动物的心室肌细胞静息电位约为-80~-90mV,其形成原理和骨骼肌、神经纤维的静息电位相似,主要是钾的电-化学平衡电位。
工作心肌在静息状态下,细胞膜上的内向整流钾通道(inward rectifier K channel,IK1通道)处在开放状态,细胞内K+循此外流,形成IK1,而细胞内带负电荷的大分子物质不能伴随外流,形成电-化学平衡,其电位数值可用Nernst公式计算得到的钾平衡电位(EK)来估算。
心肌细胞膜内外的几种主要离子浓度及其平衡电位见表4-1。
表4-1 心肌细胞主要离子浓度及其平衡电位
离子 浓度(mmol/L) 内/外浓度比值 平衡电位(mV)
细胞内液 细胞外液 
Na+ 10 145 1:4.6 +70
K+ 140 4 35:1 -94
Ca2+ 10-4 2 1:20 000 +132
Cl- 9 104 1:3.5 -65
心室肌细胞静息电位的实际测定数值总是低于钾平衡电位,这是由于在静息状态下,细胞膜外Na+顺膜内外浓度差少量漏入细胞内(钠背景电流,Na+ background current),部分地抵消了细胞内负电荷之故。
心房肌细胞膜上存在乙酰胆碱依赖性钾通道(IK-ACh通道)。它有自发性开放并受迷走神经末梢释放的递质乙酰胆碱(acetylcholine,ACh)激活开放,所以心房肌细胞的静息电位易于变动。
总的看来,工作心肌细胞的静息电位基本上是一个钾平衡电位,但受许多因素的影响(包括钠-钾泵、钠-钙交换)而偏离理论值。
特殊传导系统心肌细胞的最大舒张电位在不同的细胞中数值相差很大。浦肯野细胞约为-90mV左右,其产生原理和工作心肌细胞静息电位相似。窦房结细胞最大舒张电位仅为-60mV左右。这是由于其细胞膜上的IK1通道极为稀少,对K+的通透性(PK)较低,相对地,对Na+的通透性(PNa)显得较高,钠背景电流使细胞内电位的负值较小。
(二)动作电位
心脏各部分心肌细胞的动作电位形态各异,幅值和时程不一,它是各部分心肌生理特性不同的电生理基础,保证了心脏的正常起搏、传导以及心房心室协调有序的兴奋、收缩,完成泵血功能。这也是心电图(electrocardiogram,ECG)波形产生的基础。
心肌细胞动作电位的形态不同,说明形成它们的离子流(ionic current)基础不同。按照心肌细胞动作电位的电生理特性,特别是其去极化速率的不同,可以大致分为两类。一类是快反应动作电位(fast response action potential),另一类是慢反应动作电位(slow response action potential)。具有快反应动作电位的心肌细胞有工作心肌和浦肯野细胞(包括房室束、束支),窦房结和房室交界区中的结区细胞动作电位属于慢反应动作电位。以下分别以心室肌细胞和窦房结细胞为例,对比它们的动作电位特征和离子流基础。
1.心室肌细胞动作电位
心室肌细胞的动作电位特征是去极化(0期)迅速,复极化过程缓慢,分为1、2、3期。复极完毕后电位处在静息电位水平(4期)(图4-2)。
(1)去极化过程(0期):心室肌细胞受刺激而发生兴奋,膜内电位由-90mV迅速去极化到+30mV,形成动作电位的升支。0期时间短,约1ms。去极化速度很快,最大去极化速度(Vmax)达到200~300V/s。
0期去极化的发生原理主要是细胞外Na+的内流。细胞受刺激而兴奋时,先有少量钠通道(sodium channel)开放,Na+循膜内外浓度差内流,造成膜电位去极化。当去极化达到钠通道的阈电位(threshold potential)水平时(约-70mV),钠通道快速激活(activation)开放,开放的通道数目和开放时间激增,Na+迅速涌入细胞,称为快钠流(INa),造成去极化。去极化是一个再生性过程,去极化引起Na+内流,Na+内流又进一步加速去极化,不断循环再生。与此同时,去极化也启动了钠通道的失活过程(inactivation),失活过程使钠通道开放后迅速关闭,到0期去极化到达顶峰时,钠通道已接近完全关闭。由于钠通道激活快,失活也快,故称为快钠通道。快钠通道可以被河豚毒(TTX)选择性阻断。
(2)复极化过程:快反应动作电位的复极过程缓慢复杂,可以分为1、2、3三个期。在不同动物(包括人)和同一种动物不同部位的心室肌,复极过程存在着差异。
1)1期(快速复极初期):在本期中,膜电位迅速复极。在人和狗的心外膜下心室肌和室壁中层的细胞(M细胞),膜电位由+30mV快速复极到0mV电位水平。0期的快速去极和1期的快速复极构成一个尖锋状图形,称为锋(spike)。心内膜下心室肌1期复极程度较小,不构成锋图形(图4-3)。
1期复极由短暂的瞬时性外向电流(transient outward current,Ito)所引起,其主要成份是K+。Ito通道在膜电位除极到-30~-40mV时激活开放,但迅即失活关闭,故名。Ito通道可以被钾通道阻滞剂4-氨基吡啶(4-AP)选择性阻断。
2)2期(平台期):本期复极缓慢,膜电位停滞在0mV水平,形成平台(plateau),持续约100~150ms,是心室肌动作电位时程长的主要原因。在心内膜下心室肌,由于1期复极不显著,所以2期呈平台形;而心室壁中层M细胞和心外膜下心室肌,由于1期复极显著,所以2期成为一个向上隆起的圆顶状。这些动作电位的形态特征有它们的离子流基础。
平台期的形成涉及多种离子流,主要由于Ca2+(和少量Na+)的内流和K+的外流处于相对平衡状态而形成。在平台期初期,由于钙流激活内流比较显著,在心外膜下心室肌和室壁中层M细胞形成一个向上的圆顶;在平台期的过程中,钙内流逐步减弱,而钾外流逐步增强,形成一个微弱的净外向电流,膜电位缓慢地复极而形成平台期的晚期。
在平台期Ca2+的内流通过L型钙通道(L type calcium channel,ICa-L通道),它在膜电位除极到-40mV水平时激活开放,但它的激活、失活和复活都很慢,故称L型(long lasting)。ICa-L通道虽然在动作电位0期激活,但其内流量要到2期才达最大值,随即失活,内流量逐步减少到停止,导致2期结束,3期开始。
在平台期K+的外流主要通过延迟整流钾通道(delayed rectifier K channel,IK通道)。IK通道在膜电位除极到-40mV时激活开放,但通道的开放速率缓慢,在2期中K+外流量逐步增加。Ca2+内流量的逐步减少和K+外流量的逐步增加,使2期形成一个缓慢的复极过程。当Ca2+内流停止而K+外流显著增加时,动作电位由2期(缓慢复极期)转入3期(快速复极末期)。 
在2期中,另一个需要提到的钾通道是内向整流钾通道(IK1通道)。IK1通道具有内向整流特性,在0期除极中迅速关闭,K+不能按照电位差循IK1通道外流,在平台期IK1电流几乎为零,使膜电位不能迅速复极化。
3)3期(快速复极末期):此期内复极过程加速,膜电位由0mV水平快速恢复到静息电位-90mV,完成复极化过程,占时100~150ms。
3期复极加速主要是L型钙通道失活关闭,Ca2+内流停止,而K+外流又进行性增加所致。在3期之初,主要是IK外流,而当膜电位复极到-60mV左右,IK1通道又被激活,K+也可以循IK1通道外流,加速并最终完成复极化过程。在3期中,K+的外流造成复极,而复极化又加速K+的外流,所以也是一个再生性过程(图4-4)。

(3)恢复期(4期):在3期之末,膜电位虽然恢复到静息电位水平,但在动作电位期间流入细胞的Na+、Ca2+和流出细胞的K+所造成的细胞内外离子分布变化尚未恢复。在4期之初,细胞膜上的钠-钾泵(Na+-K+ pump)和钠-钙交换加强运转,排出Na+、Ca2+和摄回K+。此外,位于细胞膜上的钙泵(calcium pump)也加强运转,将进入细胞内的Ca2+泵出细胞。
心肌细胞膜上的钠-钾泵和钠-钙交换都参与静息电位的形成,两者都具有生电性(electrogenic action)。钠-钾泵将细胞内Na+泵出细胞,将细胞外K+泵入细胞。它是Na+-K+-ATP酶,每分解一分子ATP,泵出3个Na+,泵入2个K+,净泵出一个正电荷,产生泵电流(pump current,I pump),使细胞内电位变负。由泵电流产生的电位差不超过10mV。钠-钙交换的方向取决于细胞内、外的Na+、Ca2+浓度和膜电位水平。在交换过程中,是3个Na+和1个Ca2+跨越细胞膜交换,所以也是生电性的。在心肌细胞兴奋过程中,进入细胞的Ca2+可以通过钠-钙交换排出细胞。因此在动作电位复极刚完毕时,1个Ca2+的排出细胞交换3个Na+进入细胞,使细胞内多一个正电荷,是一个内向的钠-钙交换流(INa/Ca),也影响静息电位数值。
心房肌细胞的快反应动作电位形成原理和心室肌大致相似,但钾流种类更多,复极较快,故动作电位时程(APD)较短,仅150~200ms左右。心室浦肯野细胞的动作电位也是快反应动作电位,其特点是0期去极化较快,最大速率可达400~800V/s,所以传导速度快,复极过程也呈锋型和圆顶图型,动作电位时程持续时间最长,可达400~500ms。心室肌中动作电位时程的长短依次为:浦肯野细胞、室壁中层M细胞、心内膜下心室肌细胞、心外膜下心室肌细胞;另一方面,浦肯野细胞作为自律性细胞,不存在静息电位,在动作电位3期复极完毕后,细胞膜内电位达到最大负值,称为最大舒张电位或最大复极电位。
2.窦房结细胞动作电位
窦房结是心脏自律性最高的心肌组织,具有起搏功能,是原始的心肌细胞,其细胞内肌原纤维很少而显苍白(pale),故名P细胞。
P细胞的细胞膜上IK1通道几乎缺如,而钠背景电流相对较大,因而最大舒张电位较正,约为-60mV。另一方面P细胞膜上的快钠通道也不发达,并且由于最大舒张电位较正而处于失活关闭状态。当P细胞兴奋产生动作电位时,依赖ICa-L的内流而产生去极化(阈电位约为-40mV)。由于ICa-L幅值远小于INa,流入速率又慢,因此P细胞去极化仅到0mV电位水平,很少超射,最大去极化速率慢,一般不超过10V/s。由于L型钙通道是慢通道,由它引起的动作电位称为慢反应动作电位。
ICa-L内流造成P细胞去极化时,激活了细胞膜上的IK通道。在ICa-L通道逐渐失活关闭的同时,K+循IK通道缓慢外流而引起复极。在3期复极化过程中,随着膜内电位变负,IK通道逐步去激活而K+外流逐步减小或衰减。这种衰减过程一直持续到4期。在4期中这种外向K+流逐渐减小是P细胞自动去极化的最重要的离子流基础

心肌细胞为什么细胞内为负电荷外面为正电荷

4. 钠钾离子通道与钠钾泵有什么区别

1、就其本质而言,钠钾泵是哺乳动物细胞膜中普遍存在的离子泵。其本质是ATP酶,可以将细胞内的ATP水解为ADP自身被磷酸化而发生构象改变。离子通道是贯穿于细胞膜脂质双层,中央有亲水性孔道的膜蛋白,没有分解ATP的能力。
2、就其转运物质的方式而言,钠钾泵可以完成钠离子和钾离子的逆浓度梯度和(或)电位梯度的跨膜转运。离子通道可以转运带电粒子的顺浓度梯度和(或)电位梯度的跨膜转运。其中,钠钾离子通道分别是转运钠离子和钾离子的离子通道。
3、就其转运的物质的数量而言,钠钾泵每次活动都会将3个钠离子移出胞外,2个钾离子移入胞内,产生一个正电荷的净外移,故而具有生电效应。离子通道每次开放可以转运一个离子进出细胞,从而使细胞内外的离子保持浓度差。


扩展资料:
钠钾泵的生理意义有五点:
1、维持细胞内渗透压和细胞容积;
2、钠泵活动造成的细胞内高钾为细胞胞质内许多代谢反应所必须;
3、钠泵活动形成的钠离子和钾离子跨膜浓度梯度是细胞发生电活动的基础;
4、钠泵活动的生电效应可以直接使膜内电位的负值增大;
5、钠泵活动建立的钠离子跨膜浓度梯度可以为继发性主动转运提供势能储备。
参考资料:钠钾泵_百度百科
生物膜离子通道_百度百科

5. 下面关于心室肌细胞快钠通道的描述,哪一项是不正确的

不知你看到是否是这道题?
下面关于心室肌细胞快钠通道的描述,哪一项是不正确的()
A.激活和失活的速度都很快
B.选择性较强,只有Na可以通过
C.通透性很高
D.在去极化到-40mV时被激活
E.被河豚毒(TTX)阻断
本题答案为D。其余各项均为快钠通道的特性。而D选项所提到的则其实是一种位于心肌细胞膜上的电压门控式慢钙通道所具有的特性。

下面关于心室肌细胞快钠通道的描述,哪一项是不正确的

6. 竞争机制为什么能提高检测灵敏度

河豚毒素的研究进展(高源)

浩瀚的海洋占地球表面积71.8 % ,占地球总体积的90 %以上,在这个具有巨大时空尺度的开放型复杂体系中蕴藏着种类繁多、数量庞大的海洋生物,据估计生物总种类达30多门50 余万种,生物总量占地球总生物量的87 % ,与陆生植物相比,人们对海洋生物的认识和利用率相当有限。

海洋是大自然赋予天然产物化学家进行药物研究的广阔领域,30余年来各国科学家对海洋生物进行了广泛的研究,从中分离和鉴定出15 000余种海洋天然活性物质,并且每年以600~800 个新天然产物的速度增加。海洋生物的特殊生活环境如高压、高盐度、低营养、低温但恒温以及有限的光照和缺氧等决定了海洋生物的次生代谢产物相对陆生植物的次生代谢产物有其独特的特点。

海洋毒素(Marine Toxin) 是海洋生物活性成分中结构独特活性特强的一大类成分,主要包括聚醚梯、线性聚醚、大环内酯聚醚、生物碱聚醚、肽类和河豚毒素(tet rodotoxin , TTX) 类等,其中对TTX 类化合物的认识最早,研究也较深入。本文主要就TTX 类化合物的各方面研究进展进行总结如下。

一、TTX的研究历史

我国历代本草如《神农本草经》和《本草纲目》中都有河豚的记载。河豚(图1)学名:Fugn rubripes,属硬骨鱼纲,鲀形目,鲀亚目,鲀科,是暖水性海洋底栖鱼类,分布于北太平洋西部,在我国各大海区都有捕获,假睛东方豚还经常进入长江、黄河中下游一带水域,而暗纹东方豚亦可进入江河或定居于淡水湖中。

TTX(图2)又称原豚素 ( spheroidine) 和东方豚毒素(fugu poison) ,是一种神经毒素,它的名字来源于动物东方豚属(fugu)河豚(spheroides rubripes)的科名Tet raodontidae 。

河豚味道鲜美,营养丰富,日本、中国、欧洲等国人民素有食用习惯,由于TTX 毒性很强,因食用河豚中毒事件屡有发生。最初1909 年田原对河豚鱼卵的神经毒性进行了描述并命名其毒性成分为TTX 。1938年日本学者横尾晃,首次从河豚中提取出较纯的毒性成分,到1950 年才分离到单体结晶。随后日本津田恭介小组于1952 年,平田义正小组于1955 年,美国的Woodward 小组于1957年和后来的后藤小组相继分离得到了TTX 单体结晶。

TTX 的分子并不大,其结构新颖,在有机溶剂和水中都不溶解, 仅溶于醋酸等酸性溶剂,并且在碱性和强酸性溶剂中不稳定,加之核磁共振技术在20 世纪60 年代刚刚开始应用,给TTX 的结构鉴定带来了相当的困难。为了确定TTX 的结构,日本的津田、平田和美国的Woodward 3 个小组分别制备了TTX 的衍生物并进行X2衍射实验。终于1964 年在京都召开的国际天然产物化学会议上同时报告了TTX 的正确结构,是一种分子量不大但结构很复杂的笼形原酸酯类生物碱,分子中几乎所有的碳原子均有不对称取代。同年Mosher 从产于加利福尼亚的蝾螈中也分离出TTX。1964 年以前日本和美国学者对TTX 的结构进行了深入的研 
究,报道了多个TTX 的可能结构和部分结构。

二、TTX的分布及起源的探讨

1964 年以前,人们普遍认为TTX 仅分布于东方豚中,直到Mosher 从产于加利福尼亚的加州蝾螈中分离出了TTX才改变了人们的认识。研究发现, TTX分布于陆地和海洋的许多动物中,包括毫不相干的脊椎动物,无脊椎动物的体内和体表,甚至海底沉积的生物中,如热带刺鲥鱼,蟾蜍,哥斯达黎加的箭毒蛙,蓝斑章鱼,多棘槭海星,马蹄形蟹,花纹爱洁蟹,腹足纲软体动物如硰罗法海螺,日本东风螺,环节动物以及其他的软体动物和线虫。

既然TTX广泛分布于这么多种的生物体内,那么TTX的起源问题就引起了学者的关注。总结来看关于TTX起源问题,现在有四种假说。分别是内因说、外因说、食物链假说和微生物起源假说。

1、内因假说

主张内因说的学者认为河豚等含有的刺胞、毒腺中的蛋白质毒素是内源性毒素的来源。推测河豚鱼体内有特定功能或微生物能将摄入的食物转化为毒素。Matsumura 用人工授精法从河豚鱼( Fugu ni2phobles) 卵母细胞发育的胚胎中发现河豚毒素的毒性随胚胎发育不断增高,提出TTX 是河豚鱼胚胎的产物但始终没有更多证据证实这种说法,因此内因说没有得到广泛认可。

2、外因假说

外因说是日本学者清水、松居最早提出的。他们用含TTX 的饵料投喂养殖的无毒河豚及人工采苗饲育的河豚,结果发生毒化现象,推测毒素的起源可能是外因性的。

3、食物链假说

食物链假说是由桥本野口发现并提出的,他从海螺、海星及花纹爱洁蟹( A tergatisf lori dus) 检出高浓度的TTX ,为食物链起源假说提供了证据。Noguchi 证实白法螺( B oshubora) 体内的毒素是进食了含TTX 的海星积累的,这是食物链假说的又一例证。但这些动物含毒程度为何因地区个体的不同有很大差别呢 毒素起源于含毒饵料假说也有不少难以自圆之处。

4、 微生物起源假说

于是松居提出了TTX微生物起源假说,但当时并无实验证据。微生物起源假说日本安元健从藻食性青点鹦嘴鱼中检出的毒素经氢氧化钠衍生后生成TTX 衍生物22氨基262羟甲基喹唑啉(C9 碱) ;对摄食石灰藻的铜铸熟若蟹的检测证实同样含TTX;而不摄食石灰藻的多毛纲动物也检测到TTX 衍生物,因此认为石灰藻并非原始产毒者,推测石灰藻上可能有共生细菌附着。Nogu2chi 等由石灰藻和毒蟹的内脏分离的假单胞菌属 ( Pseudomonas) 细菌培养液中得到2 个有毒成分,确证分别与河豚毒素及脱水河豚毒素一致,碱液分解也生成C9碱;高压液相,红外光谱、质谱分析确证是TTX;分别注射小鼠腹腔,显示了与河豚毒素和脱水河豚毒素相对应的致率,从而证实TTX是细菌的代谢产物,这是TTX起源于共生微生物的最早证据。迄今已发现很多产TTX 的微生物类群。因此主张微生物起源假说的学者越来越多。

1986 年日本学者野口和安元又首次从微生物发现TTX 。随后众多的微生物如弧菌属、假单胞菌属、发光菌属、气单胞菌属、邻单胞菌属、芽胞杆菌属、不动杆菌属、链霉菌属等中发现了TTX 及其类似物,从而支持了Mosher 的假设。

三、TTX的生物活性

TTX 是发现最早的小分子海洋毒素,分子量为319(C11H17N3O8) ,毒性极大,LD50为8. 7μg/ kg ,是氰化钠的1000 倍。很多海洋食品中毒事件都与TTX 有关,河豚中毒是鱼类中毒中最为严重的一类,患者病率高达60 %。

TTX中毒的主要临床表现为知觉麻痹、运动障碍、头晕头痛、恶心呕吐、血压下降、呼吸困难、严重者因呼吸衰竭而亡。TTX 还是麻醉剂, 其局部麻醉作用是普鲁卡因(procaine)的4000倍,可作为癌症后期的缓解药。TTX 的作用机理与陆地发现的毒素不同,极低的浓度就能选择性地抑制钠离子通过神经细胞膜,但却允许钾离子通过, TTX 是一种电压敏感的钠通道(voltage2gated sodium channels ,VGSC)外口特异性阻滞剂,神经、肌肉、心肌传导纤维等可兴奋细胞膜生的钠通道,并具有高度专一性,其作用机制是通过与膜上的专一受体结合,再通过关启机制关闭通道,从而阻滞神经细胞的兴奋与传导。(见图3)

TTX 分子中1 ,2 ,32胍氨基及其附近的C4 ,C9 ,C10 碳上的羟基为活性基团。胍氨基在生理条件下通过质子化形成正电活性区域,与专一受体蛋白的负性羟基结合, 其周围羟基以氢键形式与受体结合,受体位于膜外层离子孔附近。

TTX 是神经生物学和药理学研究极为有用的工具药。TTX 还是一种较强的镇痛药,除对术后疼痛无效外,对其他疼痛均有效,作用缓慢且持久,目前还没有成瘾性的报道。

四、TTX的检测方法

近年来,随着渔业的发展,河豚鱼中毒事件的屡次出现,以及当前可能被恐怖分子利用的潜在威胁,使TTX的检测越来越为人们所重视,并具有重要的现实意义。现有的检测方法可分为生物测定法、理化分析法和免疫化学法。本文对各种TTX的检测方法加以简单的介绍,具体的方法已有较详细的文献记录,在此就不重复了。以便利用不同的实验条件对TTX进行快速、准确的检测。

1、生物测定法

包括小鼠生物实验法、竞争置换法、组织培养生物实验法、动电位法。

2、理化分析法

包括荧光法、紫外分光光度法、薄层色谱法及其联用技术、电泳法及其联用技术、气相色谱法及其联用技术、高效液相色谱法及其联用技术。

3、免疫化学检测法

TTX的检测方法很多,每种方法都有其优缺点,可根据实验条件及要求选择恰当的检测方法。TTX作为钠离子通道阻断剂,虽然毒性强,但在临床中也可作为高效镇痛剂,并且对某些肿瘤有抑制作用,在神经生物学、药理学、肌肉生理学等方面被广泛用于工具药。随着TTX检测手段的不断完善, TTX的研究将会有更大的发展,在食品检验、中毒诊断、治疗及国家安全等方面发挥更大的作用。

五、TTX的类似物

除TTX 以外, 从河豚鱼、蟾蜍、金色青蛙、蝾螈、水蜥、扁状蠕虫、贝壳类、海藻、微藻、细菌等水生动物和微生物中分离鉴定了20 余种TTX 的类似物。(见图4)这些化合物都是引起食物中毒的成分,20世纪80 年代在日本、加拿大、荷兰、台湾、香港、新加坡、马来西亚、澳大利亚、美国、孟加拉、菲济等地区发生的多起海鲜中毒事件均与此类化合物有关。

六、TTX的全合成

TTX 独特复杂的结构和显著的生物活性吸引了大批有机化学家对其全合成的兴趣。1972 年日本名古屋大学的岸义人(现哈佛大学教授)首先报道了TTX 消旋体的全合成,随后的30年间虽然对其全合成的研究也有报道,但没有完成全合成的报道,TTX 一直被有机合成化学家认为是一个极富有挑战性和吸引力的,同时也是非常令人可畏的全合成目标。

近年来随着不对称合成有机化学的迅速发展,2003 年名古屋大学的矶部稔教授完成了对TTX 的不对称全合成,随后又有几个小组采用不同的合成路线完成了对TTX 的不对称全合成。(见图5)不对称全合成均采用了逆合成的思路,合成策略。合成的难点是构筑季碳的不对称中心。

相信随着新的不对称合成反应试剂和新的化学反应的发现,对TTX及其类似物的不对称全合成会有新的更为简洁的合成路线和方法。

七、TTX的医药开发前景

1、TTX提取纯化工艺的研究

1909年日本田原良纯首次报道河豚毒素提取工艺,其纯度只有0.2%,随后50年代横尾等又相继报道了改进工艺,我国直到上世纪80年代才由河北省水产研究所与中国人民解放军药物化学研究所共同合作提取成功,于1982年1月9日鉴定通过,打破了日本在这方面的垄断技术。河豚毒素粗品的提取方法大同小异:使用水浸泡、酸提取,盐沉淀除杂质,再用氨水沉淀,得到河豚毒素粗品。随着科技的发展和技术的更新,河豚毒素纯化工艺有很大改进,从田原良纯提取得到的粗品的基础上采用氧化铝柱层析进行纯化,随后又改进为活性炭柱层析纯化等方法。

宫庆理等采用大孔树脂D201和离子交换树脂IRC286进行吸附,用去离子水将杂质洗掉,再用酸将河豚毒素洗脱下来,采用高效液相色谱制备得到高纯度的河豚毒素,纯度为99.5%,粗品精制得率为81.1%,将河豚毒素的纯化工艺又提高了一个层次。目前的提取纯化工艺成熟,在提高产率的同时,又能获得高纯度的河豚毒素,确保了河豚毒素原料的生产。

2、TTX质量控制方法可行性

国内外研究河豚毒素检测方法主要有生物测定法、高效液相色谱紫外检测法(HPLC-UV)、高效液相色谱荧光检测法(HPLCFLD)、高效毛细管电泳法(HPCE)、液质联用、气质联用等方法。生物法有酶联免疫(ELISA)法和小鼠法等。ELISA法具有特异性好、灵敏度高,可定量检测,而且有采样量极小等特点,多用于河豚毒素的痕量检测;小鼠法是利用河豚毒素的毒性特点进行的小鼠毒性检测的方法,方法简便,但定量不准确且重复性差、目标性差,现已少用。

HPLCUV法是常用的检测手段,既可以检测含量,又可以作为有关物质的考察,河豚毒素没有紫外光谱特征吸收,采用末端吸收进行检测;国外多采用柱后衍生化荧光检测的方法进行含量测定,河豚毒素本身没有荧光,氢氧化钠破坏后产生降解产物C9碱具有荧光;荧光检测的灵敏度比紫外检测的灵敏度高,但在含量测定检测结果上两种方法不存在显著性差异。

HPCE法具有高分离度和高柱效的优点,但其有重现性差、灵敏度低、需要加入内标才能定量,在有更好的HPLC检测方法时,HPCE只能作为一个补充方法。具有高灵敏度与选择性的液质联用和气质联用在分析河豚毒素及其类似化合物时显示出了其特有的专属性和高分辨、高灵敏的优越性,也是近几年研究较多的方法,为河豚毒素杂质定性检测提供保障。

国内的研究方法主要是在国外的研究基础上进行的,并没有太大的改进。目前的研究方法足以确保河豚毒素药品的质量检测,很少有报道研究河豚毒素有关物质的方法,所以还应对其有关物质的检测方法做研究,确保河豚毒素药品质量和用药安全。

3、河豚毒素医药开发展望

河豚毒素虽为剧毒,但是其高活性和高特异性的生物特征有着潜在的、巨大的医药开发价值,在临床应用方面有广阔的前景,如果利用妥当,“变毒为宝”,既减少河豚毒素处理不当对环境造成的污染,又可以创造经济利润。从稀有昂贵的河豚鱼卵巢、肝脏等内脏器官中提取河豚毒素,技术要求精湛,寻找到先进、合理的提取工艺,可以申请专利,形成技术壁垒,具有很高的商业开发价值。

河豚毒素的临床应用研究显示,河豚毒素可以用作消炎镇痛药物、还有局麻、治疗肌肉痉挛的功效,河豚毒素既可以治疗心血管疾病,又可以作为毒品的戒断药物。日本有河豚毒素针剂,国外其它国家尚未有以河豚毒素为主药成分的药物研究,国内已有多个厂家正在申报河豚毒素的原料药及其制剂,现已通过审评进入临床阶段,充分肯定了河豚毒素开发的可观前景。

八、TTX的应用前景,存在的问题及展望

尽管TTX 及其类似物作为防御性化学武器广泛分布于海生动物和两栖动物中,但对它们的生物合成途径还知之甚少。很多细菌可以合成TTX 及其类似物,但为什么要合成这些毒素,为什么TTX集中分布于河豚鱼的卵巢部位,目前还没有得出肯定的结论。

近年来关于TTX 及其类似物的不对称合成已经完成,但其产量低,目前TTX 的供应主要依靠于从河豚中直接提取,致使TTX 类化合物非常昂贵,这在一定程度上限制了TTX 类化合物作为工具药的广泛应用。

关于TTX 及其类似物的化学结构研究已经成熟,但关于TTX 的结构修饰和构效关系的研究还未见报道。由于TTX 类化合物的毒性太强,限制了其临床应用,将来经过结构修饰或改造降低其毒性有可能扩大其临床应用。其药理作用和临床应用已有专门综述,但新的作用机制还在不断的被发现。

7. ttx花样少女口红好用嘛

我用过这款口红,用着不错比较保湿,嘴唇不易起皮,颜色也可以,你可以试试。

ttx花样少女口红好用嘛

8. ttx是表示什么化学物

tetrodotoxin(简称“TTX”)是一种存在于河豚、蝾螈、斑足蟾等动物中的海洋毒素,0.5-1毫克致命。分子式C11H17N3O8。无色棱柱状晶体。对热不稳定。难溶于水,可溶于弱酸的水溶液。在碱性溶液中易分解,在低的pH值溶液中也不稳定。河豚毒素是强烈的神经毒素,很低浓度的河豚毒素就能选择性地抑制钠离子通过神经细胞膜。河豚毒素还有其他药理作用,是神经生理学和肌肉生理学研究的有用工具。河豚的种类很多。其组织器官的毒性强弱也有差异。河豚毒素从大到小依次排列的顺序为:卵巢、肝脏、脾脏、血筋、鳃、皮、精巢。冬春季节是河豚的产卵季节。此时,河豚的肉味最鲜美,但是毒素也最高。随着科学的进步,令人恐惧的河豚毒素已步入了药学殿堂,并且在治疗人类疾病方面发挥着越来越重要的作用。河豚毒素在医疗上可以用于治疗癌症。"新生油"是从河豚肝脏中提取的抗癌药物。用于治疗鼻咽癌、食道癌、胃癌、结肠癌的治疗,疗效很好。河豚可以用于镇痛。对癌症疼痛、外科手术后的疼痛、内科胃溃疡引起的疼痛,河豚毒素制剂均有良好的止痛作用。使用河豚素的好处是用量极少(只需3微克,但0.5-1毫克会致命),止痛时间长,又没有成瘾性。特别是穴位注射,作用快、效果明显,可以作为成瘾性镇痛药吗啡和杜冷丁的良好替代品。河豚毒素还可以止喘、镇痉、止痒。河豚毒素可以治疗哮喘、百日咳。对治疗胃肠道痉挛和破伤风痉挛有特效。河豚毒素对细菌有强烈杀伤作用。从河豚精巢提取的毒素,对痢疾杆菌、伤寒杆菌、葡萄球菌、链球菌、霍乱弧菌均有抑制作用,而且可以防治流感。目前,在国际市场上,河豚毒素结晶每克已经高达17万美元。现在,河豚毒素已经可以人工合成了。